RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FOURTH SEMESTER EXAMINATION, MAY 2012

SECOND YEAR

INDUSTRIAL CHEMISTRY (Honours)

Date : 21/05/2012 Time : 11 am - 2 pm

Paper : IV

Full Marks : 75

[Use Separate Answer Books for each group]

$\underline{Group-A}$

1.	An	Answer <u>any six</u> questions : [⁴					
	a)	Kinematic viscosity h	as the unit of :				
		i) centipoise ii	i) m^2/s	iii) Pa.S	iv) none of these		
	b)	Energy associated in a system while calculating energy balance may be in the form of :					
		i) position ii	i) motion	iii) internal	iv) all of the above		
	c)	$f = \frac{16}{N_{Re}}$ is valid for :					
	d)	i) Turbulent flowiii) Laminar flow throPrandtl number is :	ough a open channel	ii) Laminar flow through a circular pipeiv) none of these			
		i) $C_{p}\mu/D$ if	i) hD/K	iii) $C_{p}\mu/K$	iv) μ/hC_{p}		
	e)	e) In a heat exchanger where the hot and cold fluids are in same direction and parallel, it is called					
	,	i) Co-current ii	i) counter-current	iii) cross-flow	iv) all of these		
	f)	Maximum heat transf	er rate is achieved in :				
		i) Co-current ii	i) counter-current	iii) Turbulent	iv) Laminar flow		
	g)	Crushing operations r	nay follow :				
		i) Rittinger's Law i	i) Kick's Law	iii) Bond's Law	iv) all of these		
	h)) Which of he following is used in case of heat flow by conduction through a cylinder :					
	• \	i) Log mean area in	i) Arithmetic mean area	iii) geometric mean area	iv) none of these		
	1)	Boundary Layer conc	ept may be utilized in :		· > 11 C /1		
		1) heat transfer 11	1) mass transfer	111) momentum transfer	iv) all of these		
2.	An	Answer any five questions : [5×2]					
	a)	Write the expressions of the following dimensionless numbers and briefly state their physical significance :					
		i) Reynold's number ii) Nusselt number					
	b)	Mention what different pipe fittings are used in a fluid flow line?					
	c)	What are non-Newtonian fluids?					
	d)	What is a fluidised bed reactor?					
	e)	Check dimensional homogeneity of the equation : $Q = C_d \cdot a \cdot \sqrt{2gH}$					
		where, $Q = Discharge$, $C_d = Venturi$ constant, $a = Area$, $H = Height$.					
	f)	Write down Dittus-Boelter Equation.					
	g)	State Ficks law of dissusion.					
	h)	Explain the concept of LMTD in engineering operations.					
	1) ;)	what is an inclined manometer? Why is filtration called a machanical operation?					
	J)	winy is intration caned a mechanical operation?					
3.	An	Answer <u>any three</u> questions :					
	a)	i) Derive Hagen-Po	biseuille Equation for lam	inar flow in a pipe.		[7]	
		ii) A pipe (ID 7.5 cm) is carrying water at 20°C. A venturimeter is filled in the pipe which has a throat diameter 2.0 cm. If the differential manometer shows a reading of 50.0 cm, calculate					
		water flow rate in	n the pipe. Assume $C_d = 0$).98.		[6]	

- i) An oil having kinematic viscosity of 21.4 stokes is flowing through a pipe of 30 mm b) diameter. Determine the type of flow if the discharge through the pipe is 15 lit/sec. [5]
 - ii) The spent acid from a nitrating process contains 33% H₂SO₄, 36% HNO₃ and 31% water by weight. This acid is to be strengthened by the addition of concentrated H_2SO_4 (35%) and concentrated HNO₃ (78%). The strengthened mixed acid should finally contain 40% H₂SO₄ and 43% HNO₃. Calculate the quantities of spent and concentrated acids that should be mixed together to yield 1500 Kg of the desired mixed acid. [8]
- i) Derive the Equation for overall heat transfer coefficient from the individual film coefficients c) considering basic equation for heat transfer through convection under steady state.
 - ii) Determine the rate of heat loss through a wall of ed brick (K = 0.7 w/m.k), 5m in length, 4m in height and 0.25 m in thickness if the wall surfaces are maintained at 100°C and 30°C respectively.
 - iii) Determine the net radiant interchange between two parallel oxidized iron plates, placed at a distance of 25 mm having sized $3m \times 3m$. The surface temperature of two plates are at 100°C and 40°C respectively. Emissivity of the plates are equal, $\in_1 = \in_2 = 0.736$. [5]
- i) With the help of a neat sketch, analyze the steps in an interphase mass transfer. d)
 - ii) Hydrochloric acid (A) diffuses through a film of water (B) 4.0 m of thickness at 283K. The concentration of the acid at point 1 boundary of the film is 12% w/w and $P_1 = 1060.7 \text{ kg/m}^3$ whereas on the other boundary at point 2 is 4% w/w and $P_2 = 1020 \cdot 15 \text{ kg/m}^3$. The diffusivity of the acid in water is 2.5×10^{-9} m²/s. Calculate the acid flux considering the water to be stagnant.
- i) Derive Bernouilli's Equation for an incompressible fluid. e)
 - ii) Crude oil flows at the rate of 1000 kg/hr through the inside pipe of a double pipe heat exchanger and is heated from 30°C to 90°C. The heat is supplied by kerosene initially at 200°C flowing through annular space. If the temperature of approach (minimum temperature difference) is 10°C, determine the heat transfer area for co-current flow and kerosene flow rate. Given : C_P for crude oil = 0.5 KCal/kg°C, C_P for kerosene = 0.6 KCal/kg °C and V₀ = 400 Kcal/hr. [8]
- i) Describe various types of biochemical reactors. f) [3]
 - ii) Write a note on advantages and disadvantages of the following types of reactors. Batch reactor, CSTR, Fed batch reactor, Air lift reactor
 - iii) If you were to carry out a reaction is a highly viscous medium, would you prefer a plug flow reactor or a stirred tank reactor? Explain your answer. [2]

<u>Group – B</u>

- Answer **any four** questions : 4.
 - a) Classify polymers according to origin, thermal response, method of formation and structure with examples in each case.
 - b) Distinguish between HDPE and LDPE in respect of structure, properties and application.
 - c) Outline manufacture of PVC. How gradation of PVC is done? Name some PVC stabilizers.
 - d) Discuss the synthesis and cusing mechanism of epoxy resin.
 - Define vulcanization. Explain with equation the mechanism of vulcanization with sulphur, e) sulphur chloride and zinc oxide.
 - Write short notes on : Silicone, LLDPE. f)
 - Explain with sketch the technique involved from production of plastic goods by the process g) mentioned below (any two) :

Compression moulding, Roto-moulding, Injection moulding, Thermoforming.

約樂 Q3

 $[4\times 5]$

[8]

[5]

[4]

[8] [5]